
                                 Volume 6 Issue 2 (2018) 94-96                                           ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  94 
IJARI 

Implementation of Parity Checker Using CMOS Logic Techniques 
Bhargava Yasasvi, Charu Rana*, Pankaj Rakheja 
Department of Electronics and Electrical Engineering, The NorthCap University, Gurugram, Haryana, India. 
                          Abstract 

The technology is growing rapidly where the sizes of the components are getting reduced as the size 

gets decreased the, possibility of errors gets increased. These errors can’t be prevented as they are 

generated in the running phase. To handle such problems, we need a circuit which will be monitoring 

continuously and correcting the errors generated. This paper proposes different ways to implement 

a parity checker in the previous self-checking register. When compared with previous techniques. 

The circuits are stimulated in spice using 90nm CMOS technology. 

 

 

 

 

 
1. Introduction 
Errors are generated in every circuit by which the performance can 

get affected. These errors can be soft errors or hard errors. Soft errors 

are caused due to the interaction or colloidal of particle and a change 

in state can be observed. Soft errors can be classified into Intrinsic-

Temperature, Noisy and Extrinsic Errors-Cosmic rays, neutrons. 
Considering these factors, the performance of circuit gets reduced. 

Thus, to maximize the performance, a self-checking register is used 

to control the errors generated and to correct them. Previously there 

were so many techniques to control the errors, but some techniques 

are not so efficient as the main circuit errors get solved but the 

redundant circuit has some errors. So, to control them a SETTOFF 

self-checking register was used for radiation errors. The self-

checking register in the previous techniques has parity checker, glitch 
filter followed by td checker. In this paper discuss various ways to 

implement the parity checker. The parity checker is basically an XOR 

tree which can be implemented by using CMOS, pass transistor and 

transmission gates. The main purpose of developing a new circuit is 

to increase the performance in minimum time and to decrease the area 

as much as possible. This paper compares the difference between 

different implementation techniques and shows that the area over 

head and delay are reduced. 

2. Previous Techniques 
The previous technique implemented parity checker in a conventional 

way of using CMOS in which there are 8 MOSFETS used to design 

an XOR gate and the output is passed to the input of the Glitch filter 

which will  reduce the glitches and further connecting it with the TD 

checker which generate the final output[1]. The disadvantage of such 

parity checker is the usage of large area overheads which is a major 

drawback of the circuit design. This will also increase the power 

consumption. 

Parity checker 
Parity checker is the process that transmits the data between nodes 

during communication. Original bits are used to create an even and 

odd bit number.  These bits are transmitted through a link that can be 

any medium. Data is considered to be accurate when the transmitted 

and received bits are equal. Parity checker is implemented using the 

Xor tree. 

3.Implementation of Proposed Parity Checker Using 

Different Techniques 
The Self-checking circuit is comprised of 3 components parity 

checker, glitch filter and TD- checker. In this paper, the parity 

checker is implemented through different methods and compared the 

output and come to conclusion that which method can be used. Parity 

checker is implemented by the following ways: - 

1. CMOS 

2. Pass Transistors 

3. Transmission gate 

*Corresponding Author, 

E-mail-address:   
All rights reserved: http://www.ijari.org 

 

 
Fig.1: Self-Checker 

3.1. CMOS 

CMOS using both PMOS and NMOS to implement a logic gate. One 

MOSFET works at one time and gives us a strong ‘0’ and ‘1’. In this 

paper, CMOS is implemented by using 8 MOSFETS and 4 

MOSFETS. 

3.2. Pass Transistors 

Pass transistors are generally NMOS MOSFETS. Transistors are used 

as switches to pass logic levels between nodes of a circuit, instead of 

as switches connected directly to supply voltages. This reduces the 

number of active devices, but has the disadvantage that the difference 

of the voltage between high and low logic levels decreases at each 

stage. Each transistor in series is less saturated at its output than at its 

input. 

3.3. Transmission gates 

Transmission gate works similar as a relay which can conduct in both 

the direction or control the signal with voltage potential. It is a 

CMOS-based switch, in which PMOS passes a strong 1 but poor 0, 

and NMOS passes strong 0 but poor 1. Both PMOS and NMOS work 

simultaneously. Self-checker is implemented using CMOS inverters, 

Transmission gate at 1v. The W/L ratio for PMOS will be 

280nm/100nm and for NMOS is 480nm/100nm. The parity checker 

when implemented by 

3.3.1CMOS- 8 MOSFETS  

This is the conventional way in which 4 PMOS and 4 NMOS are 

connected serially with each other while the inputs are A, B, ABAR 

and BBAR. These inputs are given to NMOS and PMOS such that 

we get a XOR gate. Fig-2, the implementation using MOSFETS. 

 

Article Info 

Article history: 

Received 25 January 2018 

Received in revised form 

20 February 2018 

Accepted 28 February 2018 

Available online 15 June 2018 

Keywords: Parity-Checker, Transmission 

gates, Pass Transistors, Self-Checker, 

Glitch Filter 

 

 

https://en.wikipedia.org/wiki/Logic_level
https://en.wikipedia.org/wiki/CMOS


                                   Volume 6 Issue 2 (2018) 94-96                                            ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  95 
 IJARI 

Fig.2: CMOS-8 MOSFETS 

    

 

 

 

 

 

 

 

 

 

 

 

 

         Fig.3: CMOS- 4 MOSFETS 

 

 

 

 

 

 

 

 

 

 

 

Fig.4: XOR Output 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Self-Checker Output 

 
Fig.6: XOR with Transmission Gate  

 
Fig.7: XOR and Self-Checker Output 

Another way of implementing self-checker is is using  4 MOSFET, 2 

pmos and 2 nmos 

3.3.2 . Transmission Gate 

In this technique Xor gate is implemented by using 2 transmission 

gates, with inputs A, B, ABAR and BBAR 

3.3.3 Pass Transistors 
This is implemented by using 2 Pass transistors in which the supply 
is given to the drain and gate of the MOSFETS, with inputs A, B, 
ABAR and BBAR. 

 
Fig.8: XOR with Pass Transistors 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig.9: XOR and Self-Checker Output 

4. Comparative Analysis 
 

The area gets decreased in the all the 3 Techniques as compared to 

the conventional way. The Technique A, B, C uses MOSFETS 4:4:2. 
The power consumption also gets decreased in all the methods as per 

the usage of the MOSFETS. The delays and area of the different 

methods with respect to conventional CMOS are in the table I.  

Tool: - T-spice. 

Aspect ratio: - 90nm. 

 

Device No. of Area Delay of Delay of 

 Transistors Reduced XOR Self- 

  (%)  Checker 



                                   Volume 6 Issue 2 (2018) 94-96                                            ISSN 2347 - 3258 
International Journal of Advance Research and Innovation 

  96 
 IJARI 

CMOS-4 4 50 7.2364e- 1.2377e- 

MOSFET   010 009 

Transmission 4 50 7.2364e- 1.2377e- 
Gate   010 009 

Pass 2 75 1.0306e- 4.5640e- 
Transistor   009 010 

 Table I    

5. Conclusions 
In this paper, different techniques are used for implementing the 

parity checker that compares the following parameters that are 

no. of transistors, reduction of an area and the delay produced by 

XOR gate. Techniques used in the comparison are transmission 

gates, pass transistors and CMOS mosfet. Comparing all these 

techniques one can conclude that using pass transistors is 

efficient than the other techniques as pass transistor reduces the 

area by 75% and delay produced is minimum. 

References 
[1] Y Lin, M Zwolinski. A Cost-Efficient Self-Checking Register 

Architecture for Radiation Hardened Designs. 

[2] MN Babu, PNVK. Hasini, N Pavithra. An Efficient High-Speed 

9-bit Parity Checker using 4-2 Compressors (IJARECE), 4(5), 2015. 

[3] S Roy, RH Vanlalchaka. Power  efficient odd parity & checker 

Circuits (ICETACS), 1st International Conference 2013. 

[4] DA Anderson, G Metze. Design of Totally Self-Checking Check 

Circuits for m-Out-of-n Codes,  IEEE Transactions on Computers, C-

22(3), 1973. 
[5] J Khakbaz, EJ McCluskey. Self-Testing Embedded Parity 

Checkers,  IEEE Transactions on Computers, C-33(8,)  1984 

[6] N Kanopoulos, JH Carabetta.  Design and implementation of a 

totally self-checking 16 × 16 bit array multiplier, 2, 2003. 

 

 

 
 

 

 

 

 


